GRAPHING FUNCTIONS

I Introduction to Functions

Definition:

One variable is a function of another variable if a unique value of the first variable corresponds to each value of the other, ie, if the two variables are related by some formula (loosely speaking).

Notation:

The notation $f(x), A(x), P(T)$, etc is used to denote f as a function of x, A as a function of r, P as a function of T, etc.

Example 1:

The area A of a circle is a function of its radius r according to the formula,
$A(r)=\pi r^{2} \quad\left(\right.$ read "A at r equals $\left.\pi r^{2} "\right)$
ie, a definite value of A corresponds to each value of r
eg, $A(1)=\pi(1)^{2}=3.14$
$A(5)=\pi(5)^{2}=78.5$
$\mathrm{A}(0.1)=\pi(0.1)^{2}=0.0314$.
etc.

Example 2:

$f(x)=x^{3}-5 x$ (read " f at x equals $x^{3}-5 x$ ")
Here f is a function of x since the formula gives a unique value of f for each value of x

$$
\text { eg, } \begin{aligned}
& f(0)=0^{3}-5(0)=0 \\
& f(1)=1^{3}-5(1)=-4 \\
& f(-2)=(-2)^{3}-5(-2)=2
\end{aligned}
$$

etc.

Functions of Several Variables:

$$
\text { If } G \text { is a function of } n \text { variables, } x_{1}, \mathbf{x}_{2}, \ldots, X_{n} \text {) }
$$ one writes

$$
G\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Example 3:

Cylinder volume V is a function of both height h and radius r, according to the formula,

$$
V(r, h)=\pi r^{2} h
$$

ie, each pair of r and h gives a unique volume

$$
\begin{aligned}
\text { eg, } \quad V(1,1) & =\pi(1)^{2}(1)=3.14 \\
V(2,5) & =\pi(2)^{2}(5)=62.8
\end{aligned}
$$

etc.
Dependent and Independent Variables:
The independent variable is the one to which values are assigned arbitrarily, and the dependent variable is the one given by the formula. eg,
dependent variables

$$
\begin{aligned}
& \underset{\uparrow}{\downarrow} \underset{\sim}{\text { A }} \\
& \underset{\uparrow}{\downarrow}\left(\mathrm{x}_{1}, \underset{\uparrow}{\mathrm{x}_{2}}, \ldots,{\underset{\uparrow}{\mathrm{n}}}^{\mathrm{x}}\right. \text {) } \\
& \text { independent variables }
\end{aligned}
$$

Graphing Functions
Usually the independent variable is plotted along the x-axis (horizontally) and the dependent variable along the y-axis (vertically) - cf 421.40-1, part III.

The steps to graphing a function are similar to those outlined in $\S 221.40-1$, part III for data graphs, with the following notable differences:
(1) The table of values must be calculated, using the function relationship.
(2) The plotted points are always joined by a smooth curve (except for discontinuous functions, whith are beyond the scope of this textl.
(3) The curve is labelled with the equation which it represents.

Example 1:
Plot a graph showing circle area A as a function of radius r in meters, $0 \leq r \leq 4$.

Solution:

```
Use A(r) = \pir 2 to generate a table of values.
```

r meters	0	1	2	3	4
$A(r)$ meters 2	0	3.1	12.6	28.3	50.3

Graph of Circle Area vs Radius

Roots of an Equation:
The roots of any equation of the form $f(x)=0$ are the x values which satisfy this equation (make it true). Clearly, the x-coordinates of the x-intercepts of the curve $y=f(x)$ are the roots of $f(x)=0$, as illustrated below:

x_{1}, x_{2} are the roots of $f(x)=0$

Example 2:
Graph the fonction $f(x)=x^{3}-5 x$ and find the roots
of $x^{3}-5 x=0$ from the graph.
Solution:
Let $y=r(x)$, and use $y=x^{5}-5 x$ to generate a table of values

x	0	± 1	± 1.5	± 2	± 2.5	± 3	± 4
y	0	∓ 4	∓ 4.1	∓ 2	± 3.1	± 12	± 44

Roots of $x^{3}-5 x=0$ are $x= \pm 2.2$ and $x=0$

ASSIGNMENT

1. Express each of the following statements in functional notation, and give the exact formula for the notation:
(a) The circumference C of a circle is a function of its radius r.
(b) The distance d travelled in time t at a uniform speed v is a function of t and v.
(c) The total area A of the surface of a right circular cylinder is a function of its height h and radius r of its base.
2. Given $f(x)=2 x-3$, find $f(6), f(0), f(-2)$.
3. Given $H(x)=x(x-a)(x-1)$ find $H(0), H(1), H(a)$.
4. Find the length d of a diagonal of a square as a function of the perimeter p of the square.
5. Graph the following functions $f(x)$ and find the roots of $f(x)=0$ from the graphs:
(a) $4-x^{2}$
(b) $x^{2}+2 x+2$
(c) $2+9 x-x^{3}$
(d) $x^{2}-x-6$
(e) $x^{3}-3 x-1$

L. Haacke

